Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 295
Filter
1.
J Food Sci ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745368

ABSTRACT

Lonicera japonica Thunb. (LJT) is known for its valuable medicinal properties that highlight its potential application in the pharmaceutical and health food industry. We predict that LJT polyphenols by network pharmacology may be involved in immunomodulation, and the study of LJT polyphenols regulating immunity is still insufficient; therefore, we experimentally found that LJT enhances immunity by promoting the proliferation and phagocytic activity of RAW246.7 cells. A model of an immunosuppressed mouse was constructed using cyclophosphamide-induced, and LJT was extracted for the intervention. We found that LJT restored immune homeostasis in immune deficiency mice by inhibiting the abnormal apoptosis in lymphocytes, enhancing natural killer cell cytotoxicity, promoting T lymphocyte proliferation, and increasing the CD4+ and CD8+ T lymphocytes in quantity. Moreover, LJT treatment modulates immunity by significantly downregulating lipopolysaccharide-induced inflammation and oxidative stress levels. We verified the immunomodulatory function of LJT through both cell and animal experiments. The combination of potential-protein interactions and molecular docking later revealed that LJT polyphenols were associated with immunomodulatory effects on MAPK1; together, LJT intervention significantly modulates the immune, with the activation of MAPK1 as the underlying mechanism of action, which provided evidence for the utilization of LJT as a nutraceutical in immune function.

2.
Front Immunol ; 15: 1361531, 2024.
Article in English | MEDLINE | ID: mdl-38698849

ABSTRACT

The whole-genome sequence of an African swine fever virus (ASFV) strain (HuB/HH/2019) isolated from Hubei, China, was highly similar to that of the Georgia 2007/1 strain ASFV. After infection with strong strains, domestic pigs show typical symptoms of infection, including fever, depression, reddening of the skin, hemorrhagic swelling of various tissues, and dysfunction. The earliest detoxification occurred in pharyngeal swabs at 4 days post-infection. The viral load in the blood was extremely high, and ASFV was detected in multiple tissues, with the highest viral loads in the spleen and lungs. An imbalance between pro- and anti-inflammatory factors in the serum leads to an excessive inflammatory response in the body. Immune factor expression is suppressed without effectively eliciting an immune defense. Antibodies against p30 were not detected in acutely dead domestic pigs. Sequencing of the peripheral blood mononuclear cell transcriptome revealed elevated transcription of genes associated with immunity, defense, and stress. The massive reduction in lymphocyte counts in the blood collapses the body's immune system. An excessive inflammatory response with a massive reduction in the lymphocyte count may be an important cause of mortality in domestic pigs. These two reasons have inspired researchers to reduce excessive inflammatory responses and stimulate effective immune responses for future vaccine development.


Subject(s)
African Swine Fever Virus , African Swine Fever , Animals , Swine , African Swine Fever/virology , African Swine Fever/immunology , African Swine Fever Virus/immunology , African Swine Fever Virus/genetics , Cytokines , Lymphocytes/immunology , Lymphocytes/metabolism , Genotype , Viral Load , Sus scrofa , Lymphocyte Count
3.
Sci Immunol ; 9(95): eabq1558, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701190

ABSTRACT

Steroid resistance poses a major challenge for the management of autoimmune neuroinflammation. T helper 17 (TH17) cells are widely implicated in the pathology of steroid resistance; however, the underlying mechanisms are unknown. In this study, we identified that interleukin-1 receptor (IL-1R) blockade rendered experimental autoimmune encephalomyelitis (EAE) mice sensitive to dexamethasone (Dex) treatment. Interleukin-1ß (IL-1ß) induced a signal transducer and activator of transcription 5 (STAT5)-mediated steroid-resistant transcriptional program in TH17 cells, which promoted inflammatory cytokine production and suppressed Dex-induced anti-inflammatory genes. TH17-specific deletion of STAT5 ablated the IL-1ß-induced steroid-resistant transcriptional program and rendered EAE mice sensitive to Dex treatment. IL-1ß synergized with Dex to promote the STAT5-dependent expression of CD69 and the development of central nervous system (CNS)-resident CD69+ TH17 cells. Combined IL-1R blockade and Dex treatment ablated CNS-resident TH17 cells, reduced EAE severity, and prevented relapse. CD69+ tissue-resident TH17 cells were also detected in brain lesions of patients with multiple sclerosis. These findings (i) demonstrate that IL-1ß-STAT5 signaling in TH17 cells mediates steroid resistance and (ii) identify a therapeutic strategy for reversing steroid resistance in TH17-mediated CNS autoimmunity.


Subject(s)
Dexamethasone , Encephalomyelitis, Autoimmune, Experimental , Interleukin-1beta , STAT5 Transcription Factor , Th17 Cells , Animals , Th17 Cells/immunology , STAT5 Transcription Factor/metabolism , STAT5 Transcription Factor/immunology , Mice , Interleukin-1beta/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Mice, Inbred C57BL , Drug Resistance , Signal Transduction/immunology , Mice, Knockout , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/drug therapy , Female , Humans
4.
Materials (Basel) ; 17(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38730915

ABSTRACT

The amount of heat input during welding impacts the weld's thermal and mechanical behavior and the joint's properties. The current study involved conducting AA 6061 and AZ31B Mg dissimilar welding, using friction stir lap welding (FSLW) and ultrasonic vibration-enhanced FSLW (UVeFSLW). The comparison and analysis of the welding load, the weld's macro-microstructure, intermetallic compounds (IMCs), and joint properties were conducted by adjusting the process parameters. The study also examined the effect of ultrasonic vibration (UV) variations on welding heat input. The study demonstrated that it is possible to reduce the welding load by employing UV. Moreover, this impact becomes more pronounced as the welding heat input decreases. Additionally, the material flow in the weld, the width of the weld nugget zone, and the continuous IMC layer are significantly influenced by ultrasonic vibration, irrespective of the heat input during welding. However, the impact on large areas of irregular IMCs or eutectic structures is relatively small. Furthermore, achieving better joint properties becomes more feasible when a higher welding speed is employed for the Al alloy placed on top. Specifically, the impact of UV becomes more evident at higher welding speeds (≥220 mm/min).

5.
Prostate ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629249

ABSTRACT

BACKGROUND: KI67 is a well-known biomarker reflecting cell proliferation. We aim to elucidate the predictive role of KI67 in the efficacy of abiraterone for patients with advanced prostate cancer (PCa). METHODS: Clinicopathological data of 152 men with metastatic PCa, who received abiraterone therapy were retrospectively collected. The KI67 positivity was examined by immunohistochemistry using the prostate biopsy specimen. The predictive value of KI67 on the therapeutic efficacy of abiraterone was explored using Kaplan-Meier curve and Cox regression analysis. The endpoints included prostate-specific antigen (PSA) progression-free survival (PSA-PFS), radiographic PFS (rPFS), and overall survival (OS). RESULTS: In total, 85/152 (55.9%) and 67/152 (44.1%) cases, respectively, received abiraterone at metastatic hormone-sensitive (mHSPC) and castration-resistant PCa (mCRPC) stage. The median KI67 positivity was 20% (interquartile range: 10%-30%). Overall, KI67 rate was not correlated with PSA response. Notably, an elevated KI67-positive rate strongly correlated with unfavorable abiraterone efficacy, with KI67 ≥ 30% and KI67 ≥ 20% identified as the optimal cutoffs for prognosis differentiation in mHSPC (median PSA-PFS: 11.43 Mo vs. 26.43 Mo, p < 0.001; median rPFS: 16.63 Mo vs. 31.90 Mo, p = 0.003; median OS: 21.77 Mo vs. not reach, p = 0.005) and mCRPC (median PSA-PFS: 7.17 Mo vs. 12.20 Mo, p = 0.029; median rPFS: 11.67 Mo vs. 16.47 Mo, p = 0.012; median OS: 21.67 Mo vs. not reach, p = 0.073) patients, respectively. Multivariate analysis supported the independent predictive value of KI67 on abiraterone efficacy. In subgroup analysis, an elevated KI67 expression was consistently associated with unfavorable outcomes in the majority of subgroups. Furthermore, data from another cohort of 79 PCa patients with RNA information showed that those with KI67 RNA levels above the median had a significantly shorter OS than those below the median (17.71 vs. 30.72 Mo, p = 0.035). CONCLUSIONS: This study highlights KI67 positivity in prostate biopsy as a strong predictor of abiraterone efficacy in advanced PCa. These insights will assist clinicians in anticipating clinical outcomes and refining treatment decisions for PCa patients.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124331, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38669983

ABSTRACT

Herein, a collection of novel N-Ti3C2/BiOClxBr1-x composites are fabricated via a simple in-situ sonochemical process. Not only the preparation method for N-Ti3C2 but also the photocatalytic system of N-Ti3C2/BiOClxBr1-x are firstly developed. Multiple characterizations jointly demonstrate the successful fabrication of the composites. Compared to that of BiOClxBr1-x, the maximum improvements of 1.16, 1.25 and 1.26 folds are severally confirmed for the photocatalytic degradation of levofloxacin, Rhodamine B, and methylene blue over N-Ti3C2/BiOClxBr1-x composites. In addition, through radicals trapping tests, the primary active species in photocatalytic degradation process are verified to be O2-. Moreover, N-Ti3C2/BiOClxBr1-x composites also exhibit 1.18 and 1.14 times enhancements for NH3 production compared with that of BiOClxBr1-x with or without the presence of methanol, respectively. In addition, the maximum improvements of photo-current and photo-potential for BiOClxBr1-x are 1.29 and 1.86 folds with the introduction of N-Ti3C2, respectively. The enhanced photocatalytic activity of N-Ti3C2/BiOClxBr1-x composites is owing to the heightened light absorption, increased specific surface area, and accelerated separation of photoinduced carriers. Additionally, the stable photocatalytic properties of N-Ti3C2/BiOClxBr1-x are confirmed by three photocatalytic recycle tests on pollutant degradation and nitrogen reduction combined with X-ray diffraction patterns before and after three recycles. This study suggests that N-Ti3C2 is an efficient ornamentation for boosting photocatalytic activity ofBiOClxBr1-x, which can also be expanded as a promising modifier for other semiconductors.

7.
Mol Ecol ; : e17332, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38529738

ABSTRACT

Climate change is intensifying the frequency and severity of extreme temperatures. Understanding the molecular mechanisms underlying the ability to cope with acute thermal stress is key for predicting species' responses to extreme temperature events. While many studies have focused on the individual roles of gene expression, post-transcriptional processes and epigenetic modifications in response to acute thermal stress, the relative contribution of these molecular mechanisms remains unclear. The wide range of thermal limits of western mosquitofish (Gambusia affinis) provides an opportunity to explore this interplay. Here, we quantified changes in gene expression, alternative splicing, DNA methylation and microRNA (miRNA) expression in muscle tissue dissected from mosquitofish immediately after reaching high (CTmax) or low thermal limit (CTmin). Although the numbers of genes showing expression and splicing changes in response to acute temperature stress were small, we found a possibly larger and non-redundant role of splicing compared to gene expression, with more genes being differentially spliced (DSGs) than differentially expressed (DEGs), and little overlap between DSGs and DEGs. We also identified a small proportion of CpGs showing significant methylation change (i.e. differentially methylated cytosines, DMCs) in fish at thermal limits; however, there was no overlap between DEGs and genes annotated with DMCs in both CTmax and CTmin experiments. The weak interplay between epigenetic modifications and gene expression was further supported by our discoveries of no differentially expressed miRNAs. These findings provide novel insights into the relative role of different molecular mechanisms underlying immediate responses to extreme temperatures and demonstrate non-concordant responses of epigenetic and transcriptional mechanisms to acute temperature stress.

8.
Clin Cancer Res ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512114

ABSTRACT

PURPOSE: Fumarate hydratase-deficient renal cell carcinoma (FH-deficient RCC) is a rare and lethal subtype of kidney cancer. However, the optimal treatments and molecular correlates of benefits for FH-deficient RCC are currently lacking. EXPERIMENTAL DESIGN: A total of 91 patients with FH-deficient RCC from 15 medical centers between 2009 and 2022 were enrolled in this study. Genomic and bulk RNA sequencing (RNA-seq) were performed on 88 and 45 untreated FH-deficient RCCs, respectively. Single-cell RNA-seq was performed to identify biomarkers for treatment response. Main outcomes included disease-free survival (DFS) for localized patients, objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) for metastatic patients. RESULTS: In the localized setting, we found that a cell cycle progression signature enabled to predict disease progression. In the metastatic setting, first-line immune checkpoint inhibitor plus tyrosine kinase inhibitor (ICI+TKI) combination therapy showed satisfactory safety and was associated with a higher ORR (43.2% vs. 5.6%), apparently superior PFS (median PFS: 17.3 vs. 9.6 months, P=0.016) and OS (median OS: not reached vs. 25.7 months, P=0.005) over TKI monotherapy. Bulk and single-cell RNA-seq data revealed an enrichment of memory and effect T cells in responders to ICI plus TKI combination therapy. Furthermore, we identified a signature of memory and effect T cells that was associated with the effectiveness of ICI plus TKI combination therapy. CONCLUSIONS: ICI plus TKI combination therapy may represent a promising treatment option for metastatic FH-deficient RCC. A memory/active T cell-derived signature is associated with the efficacy of ICI+TKI but necessitates further validation.

10.
Opt Express ; 32(4): 6658-6671, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439364

ABSTRACT

By effectively controlling the dipole-dipole interaction, we investigate the characteristics of the ground state of bright solitons in a spin-orbit coupled dipolar Bose-Einstein condensate. The dipolar atoms are trapped within a double-lattice which consists of a linear and a nonlinear lattice. We derive the motion equations of the different spin components, taking the controlling mechanisms of the dipole-dipole interaction into account. An analytical expression of dipole-dipole interaction is derived. By adjusting the dipole polarization angle, the dipole interaction can be adjusted from attraction to repulsion. On this basis, we study the generation and manipulation of the bright solitons using both the analytical variational method and numerical imaginary time evolution. The stability of the bright solitons is also analyzed and we map out the stability phase diagram. By adjusting the long-range dipole-dipole interaction, one can achieve manipulation of bright solitons in all aspects, including the existence, width, nodes, and stability. Considering the complexity of our system, our results will have enormous potential applications in quantum simulation of complex systems.

11.
Thromb Res ; 237: 52-63, 2024 May.
Article in English | MEDLINE | ID: mdl-38547695

ABSTRACT

The presence of neutrophil extracellular traps (NETs) in thrombotic diseases has been extensively studied. The exact mechanism of NET formation in deep venous thrombosis (DVT) has not been largely studied. This study is aimed to explore the role of NETs and their interaction with platelet factor 4 (PF4) in DVT. In plasma samples from 51 healthy volunteers and 52 DVT patients, NET markers and PF4 were measured using enzyme-linked immunosorbent assays (ELISA). NET generation in blood samples from healthy subjects and DVT patients was analyzed by confocal microscopy and flow cytometry. The plasma levels of NETs were significantly elevated in DVT patients, and neutrophils from patients showed a stronger ability to generate NETs after treatment. PF4 was upregulated in plasma samples from DVT patients and mediated NET formation. NETs enhanced procoagulant (PCA) via tissue factor and activating platelets to induce procoagulant activity. In addition, we established an inferior vena cava ligation (IVC) model to examine the role of NETs in thrombogenicity in DVT. In conclusion, NET formation was mediated by PF4 and enhance the procoagulant activity in DVT.


Subject(s)
Extracellular Traps , Platelet Factor 4 , Venous Thrombosis , Adult , Animals , Female , Humans , Male , Mice , Middle Aged , Blood Platelets/metabolism , Extracellular Traps/metabolism , Neutrophils/metabolism , Platelet Factor 4/blood , Platelet Factor 4/metabolism , Venous Thrombosis/blood , Venous Thrombosis/pathology
13.
Sensors (Basel) ; 24(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38339512

ABSTRACT

This work investigates wireless covert communication in a multi-sensor asymmetric noise scenario. We adopt KL (Kullback-Leibler) divergence as the covertness constraint metric and mutual information as the transmission rate metric. To accurately approximate KL divergence and mutual information in covert communication, we employ the Taylor series expansion technique. Analytical expressions for KL divergence and mutual information in covert communication are derived, and we optimize the amplitude gain and phase angles based on these analytical expressions. Our findings underscore the importance of phase angle selection in covert communication within asymmetric noise systems. We propose an effective method for optimizing the transmission amplitude gain and phase angles in scenarios with asymmetric noise. Numerical results validate the effectiveness and superiority of our proposed method.

14.
Cell Death Discov ; 10(1): 76, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355574

ABSTRACT

Long noncoding RNAs (lncRNAs) are a group of noncoding RNAs with transcript lengths of >200 nucleotides. Mounting evidence suggests that lncRNAs are closely associated with tumorigenesis. LncRNA H19 (H19) was the first lncRNA to function as an oncogene in many malignant tumors. Apart from the established role of H19 in promoting cell growth, proliferation, invasion, migration, epithelial-mesenchymal transition (EMT), and metastasis, it has been recently discovered that H19 also inhibits programmed cell death (PCD) of cancer cells. In this review, we summarize the mechanisms by which H19 regulates PCD in cancer cells through various signaling pathways, molecular mechanisms, and epigenetic modifications. H19 regulates PCD through the Wnt/ß-catenin pathway and the PI3K-Akt-mTOR pathway. It also acts as a competitive endogenous RNA (ceRNA) in PCD regulation. The interaction between H19 and RNA-binding proteins (RBP) regulates apoptosis in cancer. Moreover, epigenetic modifications, including DNA and RNA methylation and histone modifications, are also involved in H19-associated PCD regulation. In conclusion, we summarize the role of H19 signaling via PCD in cancer chemoresistance, highlighting the promising research significance of H19 as a therapeutic target. We hope that our study will contribute to a broader understanding of H19 in cancer development and treatment.

15.
Article in English | MEDLINE | ID: mdl-38355915

ABSTRACT

AIM: This study aims to utilize machine learning (ML) and logistic regression (LR) models to predict surgical outcomes among patients with traumatic brain injury (TBI) based on admission examination, assisting in making optimal surgical treatment decision for these patients. METHOD: We conducted a retrospective review of patients hospitalized in our department for moderate-to-severe TBI. Patients admitted between October 2011 and October 2022 were assigned to the training set, while patients admitted between November 2022 and May 2023 were designated as the external validation set. Five ML algorithms and LR model were employed to predict the postoperative Glasgow Outcome Scale (GOS) status at discharge using clinical and routine blood data collected upon admission. The Shapley (SHAP) plot was utilized for interpreting the models. RESULTS: A total of 416 patients were included in this study, and they were divided into the training set (n = 396) and the external validation set (n = 47). The ML models, using both clinical and routine blood data, were able to predict postoperative GOS outcomes with area under the curve (AUC) values ranging from 0.860 to 0.900 during the internal cross-validation and from 0.801 to 0.890 during the external validation. In contrast, the LR model had the lowest AUC values during the internal and external validation (0.844 and 0.567, respectively). When blood data was not available, the ML models achieved AUCs of 0.849 to 0.870 during the internal cross-validation and 0.714 to 0.861 during the external validation. Similarly, the LR model had the lowest AUC values (0.821 and 0.638, respectively). Through repeated cross-validation analysis, we found that routine blood data had a significant association with higher mean AUC values in all ML and LR models. The SHAP plot was used to visualize the contributions of all predictors and highlighted the significance of blood data in the lightGBM model. CONCLUSION: The study concluded that ML models could provide rapid and accurate predictions for postoperative GOS outcomes at discharge following moderate-to-severe TBI. The study also highlighted the crucial role of routine blood tests in improving such predictions, and may contribute to the optimization of surgical treatment decision-making for patients with TBI.

16.
J Hazard Mater ; 466: 133581, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38271872

ABSTRACT

Microplastics (MPs) have emerged as a significant global environmental concern, particularly within agricultural soil systems. The extensive use of plastic film mulching in cotton cultivation has led to the alarming presence of MP pollution in cotton fields. However, the uptake and effects of MPs on the growth of cotton plants are poorly understood. In this study, we conducted a comprehensive analysis of hydroponically cultured cotton seedlings at the phenotypic, transcriptional, and metabolic levels after exposure to carboxyl-modified polystyrene microplastics (PS-COOH). Treatment with three concentrations of PS-COOH (100, 300, and 500 mg/L) resulted in notable growth inhibition of treated plants and exhibited a dose-dependent effect. And, PS-COOH can invade cotton roots and be absorbed through the intercellular spaces via apoplastic uptake, with accumulation commensurate with treatment duration. Transcriptomic analysis showed significant up-regulation of genes associated with antioxidant activity in response to 300 mg/L PS-COOH treatment, suggesting the induction of oxidative stress. In addition, the PS-COOH treatment activated the phenylpropanoid biosynthesis pathway, leading to lignin and flavonoid accumulation, and altered sucrose catabolism. These findings illustrate the absorption and effects of MPs on cotton seedlings and offer valuable insights into the potential toxicity of MPs to plants in soil mulched with plastic film.


Subject(s)
Gossypium , Microplastics , Microplastics/toxicity , Plastics/toxicity , Polystyrenes/toxicity , Soil
17.
Inquiry ; 61: 469580231224345, 2024.
Article in English | MEDLINE | ID: mdl-38281995

ABSTRACT

Facing the increasingly severe aging situation, China has started to implement the "integrated medical services and elderly care (IMSEC)" policy, which covers a variety of IMSEC models. However, there is currently little research on middle-aged and elderly people's choice preference for these IMSEC models and their associated factors. Through the face-to-face questionnaire method, the choice preference of middle-aged and elderly people aged 45 years and over in Zhejiang Province, China, to the IMSEC model is explored. Through the multinomial logistic regression model, the influencing factors of choice preference are analyzed. A total of 1034 people are included in 2022. Their choice preference for the 4 major types of IMSEC models are Home IMSEC model (48.07%), Community IMSEC model (23.79%), Institutional IMSEC model (21.76%), and Internet Plus IMSEC model (6.38%). "C1. Home elderly care and contracted with a family doctor" is the most chosen subtype, accounting for 34.53%. The rural elderly are more likely to choose "Home IMSEC model" (OR(95%CI) = 2.977(1.343-6.601)). Elderly people with relatively large life care needs are more likely to choose "Institutional IMSEC model" (OR(95%CI) = 1.114(1.042-1.190)). Moreover, age, education, and self-reported health status are also influencing factors of choice preference. The government should focus on promoting the development of the "Home IMSEC model" and increase the promotion of "Internet Plus IMSEC model." In addition, the life care service capacity and spiritual comfort capacity of IMSEC institutions, as well as the medical service capacity of the community, need to be enhanced.


Subject(s)
Aging , Home Care Services , Middle Aged , Humans , Aged , Cross-Sectional Studies , China , Health Status
18.
Cell Commun Signal ; 22(1): 50, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38233928

ABSTRACT

AIMS: Neutrophil extracellular traps (NETs) have been implicated in thrombotic diseases. There is no definitive explanation for how NETs form during acute ischemic strokes (AIS). The purpose of our study was to investigate the potential mechanism and role of NETs formation in the AIS process. METHODS: As well as 45 healthy subjects, 45 patients with AIS had ELISA tests performed to detect NET markers. Expression of high-mobility group box 1 (HMGB1) on platelet microvesicles (PMVs) was analyzed by flow cytometry in healthy subjects and AIS patients' blood samples. We established middle cerebral artery occlusion (MCAO) mice model to elucidate the interaction between PMPs and NETs. RESULTS: A significant elevation in NET markers was found in patient plasma in AIS patients, and neutrophils generated more NETs from patients' neutrophils. HMGB1 expression was upregulated on PMVs from AIS patients and induced NET formation. NETs enhanced Procoagulant activity (PCA) through tissue factor and via platelet activation. Targeting lactadherin in genetical and in pharmacology could regulate the formation of NETs in MCAO model. CONCLUSIONS: NETs mediated by PMVs derived HMGB1 exacerbate thrombosis and brain injury in AIS. Video Abstract.


Subject(s)
Brain Injuries , Extracellular Traps , HMGB1 Protein , Ischemic Stroke , Thrombosis , Animals , Mice , Humans , Extracellular Traps/metabolism , HMGB1 Protein/metabolism , Thrombosis/metabolism , Neutrophils , Brain Injuries/metabolism
19.
Dentomaxillofac Radiol ; 53(2): 127-136, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38166355

ABSTRACT

OBJECTIVES: Instance-level tooth segmentation extracts abundant localization and shape information from panoramic radiographs (PRs). The aim of this study was to evaluate the performance of a mask refinement network that extracts precise tooth edges. METHODS: A public dataset which consists of 543 PRs and 16211 labelled teeth was utilized. The structure of a typical Mask Region-based Convolutional Neural Network (Mask RCNN) was used as the baseline. A novel loss function was designed focus on producing accurate mask edges. In addition to our proposed method, 3 existing tooth segmentation methods were also implemented on the dataset for comparative analysis. The average precisions (APs), mean intersection over union (mIoU), and mean Hausdorff distance (mHAU) were exploited to evaluate the performance of the network. RESULTS: A novel mask refinement region-based convolutional neural network was designed based on Mask RCNN architecture to extract refined masks for individual tooth on PRs. A total of 3311 teeth were correctly detected from 3382 tested teeth in 111 PRs. The AP, precision, and recall were 0.686, 0.979, and 0.952, respectively. Moreover, the mIoU and mHAU achieved 0.941 and 9.7, respectively, which are significantly better than the other existing segmentation methods. CONCLUSIONS: This study proposed an efficient deep learning algorithm for accurately extracting the mask of any individual tooth from PRs. Precise tooth masks can provide valuable reference for clinical diagnosis and treatment. This algorithm is a fundamental basis for further automated processing applications.


Subject(s)
Algorithms , Tooth , Humans , Radiography, Panoramic , Neural Networks, Computer , Tooth/diagnostic imaging
20.
Dalton Trans ; 53(3): 917-931, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38105741

ABSTRACT

In this work, N-graphyne is in situ coupled with BiOCl0.5Br0.5via a facile one-step sonochemical method. To our knowledge, both the synthesis strategy for BiOCl0.5Br0.5 and the N-graphyne/BiOCl0.5Br0.5 photocatalytic system are new developments. A collection of characterization methods is adopted to detect the morphologies, structures, and electronic and optical properties. The results demonstrate that wrinkle-like N-graphyne nanosheets successfully enwind around or on flower-like BiOCl0.5Br0.5 microspheres, which are regularly assembled by BiOCl0.5Br0.5 nanosheets. Compared with pristine BiOCl0.5Br0.5, N-graphyne/BiOCl0.5Br0.5 composites exhibit superior adsorption capacity and visible-light-driven photocatalytic degradation of levofloxacin. In particular, the optimal N-graphyne amount for ameliorating the photocatalytic performance of BiOCl0.5Br0.5 is ascertained. In addition, the good stable performance for photocatalysis is confirmed by four cycling experiments. The dominant active species is confirmed to be O2˙- during photodegradation. The improved photocatalytic activity is attributed to the enhanced visible light response and the accelerated transfer/separation of photogenerated carriers by N-graphyne, which are verified using UV-vis absorption spectra, photocurrents, photopotentials, Nyquist plots, and Mott-Schottky curves. This study develops a new perspective for the synthesis and modification of BiOX solid solution, which can be used as an efficient photocatalyst.

SELECTION OF CITATIONS
SEARCH DETAIL
...